题目内容
若关于x、y的方程xa-b-2ya+b+2=11是二元一次方程,那么a、b的值分别是( )
A. 1、0 B. 0、-1 C. 2、1 D. 2、-3
如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为( )
A. 20° B. 24° C. 25° D. 26°
某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需 元.
将三元一次方程组,经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是( )
A. B. C. D.
已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).
(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;
(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;
(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.
如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.
如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF; ②当AB=2,AD=3 时,求线段DH的长.
在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=a∠C;④∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有( )
A. 1个 B. 2个 C. 3个 D. 4个