题目内容

【题目】如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr)
(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是
(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:
+2,﹣1,﹣5,+4,+3,﹣2
①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?
②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?

【答案】
(1)﹣2π
(2)解:①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;

②|﹢2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,

Q点运动的路程共有:17×2π×1=34π;

(+2)+(﹣1)+(﹣5)+(+4 )+(+3 )+(﹣2)=1,

1×2π=2π,此时点Q所表示的数是2π


【解析】解:(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是﹣2π;故答案为:﹣2π;
(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即可得出Q点移动距离变化;②利用绝对值得性质以及有理数的加减运算得出移动距离和Q表示的数即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网