ÌâÄ¿ÄÚÈÝ
£¨2012•ºù«µºÒ»Ä££©Èçͼ£¬Å×ÎïÏßy=ax2+bx+
(a¡Ù0)¾¹ýA£¨-3£¬0£©£¬C£¨5£¬0£©Á½µã£¬µãBΪÅ×ÎïÏ߶¥µã£¬Å×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¶¯µãP´ÓµãB³ö·¢£¬ÑØÏ߶ÎBDÏòÖÕµãD×÷ÔÈËÙÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪt£¬¹ýµãP×÷PM¡ÍBD£¬½»BCÓÚµãM£¬ÒÔPMΪÕý·½ÐεÄÒ»±ß£¬ÏòÉÏ×÷Õý·½ÐÎPMNQ£¬±ßQN½»BCÓÚµãR£¬ÑÓ³¤NM½»ACÓÚµãE£®
¢Ùµ±tΪºÎֵʱ£¬µãNÂäÔÚÅ×ÎïÏßÉÏ£»
¢ÚÔÚµãPÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹µÃËıßÐÎECRQΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³ö´Ëʱ¿ÌµÄtÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
15 | 2 |
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¶¯µãP´ÓµãB³ö·¢£¬ÑØÏ߶ÎBDÏòÖÕµãD×÷ÔÈËÙÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪt£¬¹ýµãP×÷PM¡ÍBD£¬½»BCÓÚµãM£¬ÒÔPMΪÕý·½ÐεÄÒ»±ß£¬ÏòÉÏ×÷Õý·½ÐÎPMNQ£¬±ßQN½»BCÓÚµãR£¬ÑÓ³¤NM½»ACÓÚµãE£®
¢Ùµ±tΪºÎֵʱ£¬µãNÂäÔÚÅ×ÎïÏßÉÏ£»
¢ÚÔÚµãPÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹µÃËıßÐÎECRQΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³ö´Ëʱ¿ÌµÄtÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°ÑµãA¡¢C×ø±ê´úÈëÅ×ÎïÏß½âÎöʽµÃµ½¹ØÓÚa¡¢bµÄ¶þÔªÒ»´Î·½³Ì×飬½â·½³Ì×éÇó³öa¡¢bµÄÖµ£¬¼´¿ÉµÃ½â£»
£¨2£©¸ù¾ÝÅ×ÎïÏß½âÎöʽÇó³ö¶¥µãBµÄ×ø±ê£¬È»ºó¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÓÃt±íʾ³öPM£¬ÔÙÇó³öNEµÄ³¤¶È£¬¢Ù±íʾ³öµãNµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãNÔÚÅ×ÎïÏßÉÏ£¬°ÑµãNµÄ×ø±ê´úÈëÅ×ÎïÏߣ¬½â·½³Ì¼´¿ÉµÃ½â£»¢Ú¸ù¾ÝPMµÄ³¤¶È±íʾ³öQD£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽ£¬È»ºó¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽÇó³öµãRµÄºá×ø±ê£¬´Ó¶øÇó³öQRµÄ³¤¶È£¬ÔÙ±íʾ³öECµÄ³¤¶È£¬È»ºó¸ù¾ÝƽÐÐËıßÐζԱßƽÐÐÇÒÏàµÈÁÐʽÇó½â¼´¿É£®
£¨2£©¸ù¾ÝÅ×ÎïÏß½âÎöʽÇó³ö¶¥µãBµÄ×ø±ê£¬È»ºó¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÓÃt±íʾ³öPM£¬ÔÙÇó³öNEµÄ³¤¶È£¬¢Ù±íʾ³öµãNµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãNÔÚÅ×ÎïÏßÉÏ£¬°ÑµãNµÄ×ø±ê´úÈëÅ×ÎïÏߣ¬½â·½³Ì¼´¿ÉµÃ½â£»¢Ú¸ù¾ÝPMµÄ³¤¶È±íʾ³öQD£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽ£¬È»ºó¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽÇó³öµãRµÄºá×ø±ê£¬´Ó¶øÇó³öQRµÄ³¤¶È£¬ÔÙ±íʾ³öECµÄ³¤¶È£¬È»ºó¸ù¾ÝƽÐÐËıßÐζԱßƽÐÐÇÒÏàµÈÁÐʽÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©¡ßy=ax2+bx+
¾¹ýA£¨-3£¬0£©£¬C£¨5£¬0£©Á½µã£¬
¡à
£¬
½âµÃ
£¬
ËùÒÔ£¬Å×ÎïÏߵĽâÎöʽΪy=-
x2+x+
£»
£¨2£©¡ßy=-
x2+x+
£¬
=-
£¨x2-2x+1£©+
+
£¬
=-
£¨x-1£©2+8£¬
¡àµãBµÄ×ø±êΪ£¨1£¬8£©£¬
¡ßÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£¬
¡àBD=8£¬CD=5-1=4£¬
¡ßPM¡ÍBD£¬
¡àPM¡ÎCD£¬
¡à¡÷BPM¡×¡÷BDC£¬
¡à
=
£¬
¼´
=
£¬
½âµÃPM=
t£¬
ËùÒÔ£¬OE=1+
t£¬
¡ßËıßÐÎPMNQΪÕý·½ÐΣ¬
¡àNE=8-t+
t=8-
t£¬
¢ÙµãNµÄ×ø±êΪ£¨1+
t£¬8-
t£©£¬
ÈôµãNÔÚÅ×ÎïÏßÉÏ£¬Ôò-
£¨1+
t-1£©2+8=8-
t£¬
ÕûÀíµÃ£¬t£¨t-4£©=0£¬
½âµÃt1=0£¨ÉáÈ¥£©£¬t2=4£¬
ËùÒÔ£¬µ±t=4Ãëʱ£¬µãNÂäÔÚÅ×ÎïÏßÉÏ£»
¢Ú´æÔÚ£®
ÀíÓÉÈçÏ£º¡ßPM=
t£¬ËıßÐÎPMNQΪÕý·½ÐΣ¬
¡àQD=NE=8-
t£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+m£¬
Ôò
£¬
½âµÃ
£¬
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=-2x+10£¬
Ôò-2x+10=8-
t£¬
½âµÃx=
t+1£¬
ËùÒÔ£¬QR=
t+1-1=
t£¬
ÓÖEC=CD-DE=4-
t£¬
¸ù¾ÝƽÐÐËıßÐεĶԱßƽÐÐÇÒÏàµÈ¿ÉµÃQR=EC£¬
¼´
t=4-
t£¬
½âµÃt=
£¬
´ËʱµãPÔÚBDÉÏ£¬ËùÒÔ£¬µ±t=
ʱ£¬ËıßÐÎECRQΪƽÐÐËıßÐΣ®
15 |
2 |
¡à
|
½âµÃ
|
ËùÒÔ£¬Å×ÎïÏߵĽâÎöʽΪy=-
1 |
2 |
15 |
2 |
£¨2£©¡ßy=-
1 |
2 |
15 |
2 |
=-
1 |
2 |
1 |
2 |
15 |
2 |
=-
1 |
2 |
¡àµãBµÄ×ø±êΪ£¨1£¬8£©£¬
¡ßÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£¬
¡àBD=8£¬CD=5-1=4£¬
¡ßPM¡ÍBD£¬
¡àPM¡ÎCD£¬
¡à¡÷BPM¡×¡÷BDC£¬
¡à
BP |
BD |
PM |
CD |
¼´
t |
8 |
PM |
4 |
½âµÃPM=
1 |
2 |
ËùÒÔ£¬OE=1+
1 |
2 |
¡ßËıßÐÎPMNQΪÕý·½ÐΣ¬
¡àNE=8-t+
1 |
2 |
1 |
2 |
¢ÙµãNµÄ×ø±êΪ£¨1+
1 |
2 |
1 |
2 |
ÈôµãNÔÚÅ×ÎïÏßÉÏ£¬Ôò-
1 |
2 |
1 |
2 |
1 |
2 |
ÕûÀíµÃ£¬t£¨t-4£©=0£¬
½âµÃt1=0£¨ÉáÈ¥£©£¬t2=4£¬
ËùÒÔ£¬µ±t=4Ãëʱ£¬µãNÂäÔÚÅ×ÎïÏßÉÏ£»
¢Ú´æÔÚ£®
ÀíÓÉÈçÏ£º¡ßPM=
1 |
2 |
¡àQD=NE=8-
1 |
2 |
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+m£¬
Ôò
|
½âµÃ
|
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=-2x+10£¬
Ôò-2x+10=8-
1 |
2 |
½âµÃx=
1 |
4 |
ËùÒÔ£¬QR=
1 |
4 |
1 |
4 |
ÓÖEC=CD-DE=4-
1 |
2 |
¸ù¾ÝƽÐÐËıßÐεĶԱßƽÐÐÇÒÏàµÈ¿ÉµÃQR=EC£¬
¼´
1 |
4 |
1 |
2 |
½âµÃt=
16 |
3 |
´ËʱµãPÔÚBDÉÏ£¬ËùÒÔ£¬µ±t=
16 |
3 |
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬Ö÷ÒªÉæ¼°´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¨°üÀ¨¶þ´Îº¯Êý½âÎöʽ£¬Ò»´Îº¯Êý½âÎöʽ£©£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Æ½ÐÐËıßÐεĶԱßƽÐÐÇÒÏàµÈµÄÐÔÖÊ£¬×ÛºÏÐÔ½ÏÇ¿£¬µ«ÄѶȲ»´ó£¬×Ðϸ·ÖÎö±ã²»ÄÑÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿