题目内容

(2012•葫芦岛一模)如图,已知AB是半圆O的直径,AB=10,点P是半圆周上一点,连接AP、BP,并延长BP至点C,使CP=BP,过点C作CE⊥AB,点E为垂足,CE交AP于点F,连接OF.
(1)当∠BAP=30°时,求
BP
的长度;
(2)当CE=8时,求线段EF的长;
(3)在点P运动过程中,点E随之运动到点A、O之间时,以点E、O、F为顶点的三角形与△BAP相似,请求出此时AE的长度.
分析:(1)连接OP,利用圆周角定理可得出∠BOP=2∠BAP,然后代入弧长公式即可求出
BP
的长度.
(2)连接AC,则可判断AP是线段BC的垂直平分线,在Rt△ACE中,求出AE,从而得出BE,再由Rt△AEF∽Rt△CEB,利用相似三角形的性质即可得出EF的长度.
(3)若以点E、O、F为顶点的三角形与△BAP相似,则有∠EOF=∠PAB或∠EOF=∠ABP,然后分别求出AE的长度即可.
解答:解:(1)连接OP,

∵AB=10,
∴OB=5,
又∵∠BAP=30°,
∴∠BOP=60°,
BP
=
60×π×5
180
=
3

(2)连接AC,

∵AB是半圆O的直径,
∴∠APB=90°,
又∵CP=BP,
∴AP是线段BC的垂直平分线,
∴AC=AB=10,
在Rt△ACE中,AE=
AC2-CE2
=
102-82
=6

∴BE=4,
又∵Rt△AEF∽Rt△CEB,
EF
BE
=
AE
CE
EF
4
=
6
8

∴EF=3.
(3)若以点E、O、F为顶点的三角形与△BAP相似,则有∠EOF=∠PAB或∠EOF=∠ABP,
①当∠EOF=∠PAB时,此时△AOF为等腰三角形,点E为AO的中点,即AE=
5
2

②当∠EOF=∠ABP时,OF∥BP,
此时OE=5-AE,BE=10-AE,
∵Rt△EOF∽Rt△EBC,
OE
EB
=
OF
BC
5-AE
10-AE
=
1
4

∴AE=
10
3
点评:此题属于二次函数的综合题,涉及了圆周角定理、勾股定理、相似三角形的判定与性质,本题的难点在第三问,注意分类讨论,不要漏解,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网