题目内容
【题目】如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为( )
A. 4 B. 8 C. 10 D. 12
【答案】B
【解析】由四边形ABCD为矩形,得到OD=OC,再利用平行四边形的判定得到四边形DECO为平行四边形,利用菱形的判定定理得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.
解:∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,
∴OA=OB=OC=OD=2,
∵CE∥BD,DE∥AC,
∴四边形DECO为平行四边形,
∵OD=OC,
∴四边形DECO为菱形,
∴OD=DE=EC=OC=2,
则四边形OCED的周长为2+2+2+2=8,
故选B.
练习册系列答案
相关题目