题目内容
【题目】如图甲,正方形和正方形共一顶点,且点在上.连接并延长交于点.
(1)请猜想与的位置关系和数量关系,并说明理由;
(2)若点不在上,其它条件不变,如图乙.与是否还有上述关系?试说明理由.
【答案】(1)BG=DE,BG⊥DE,理由见解析;(2)BG和DE还有上述关系:BG=DE,BG⊥DE,理由见解析
【解析】
(1)由四边形ABCD,CEFG都是正方形,得到CB=CD,CG=CE,∠BCG=∠DCE=90°,于是Rt△BCG≌Rt△DCE,得到BG=DE,∠CBG=∠CDE,根据三角形内角和定理可得到∠DHG=∠GCB=90°,即BG⊥DE.
(2)BG和DE还有上述关系.证明的方法与(1)一样.
(1)BG=DE,BG⊥DE.
理由:∵四边形ABCD,CEFG都是正方形,
∴CB=CD,CG=CE,∠BCG=∠DCE=90°,
∴△BCG≌△DCE(SAS),
∴BG=DE,
∵△BCG≌△DCE,
∴∠CBG=∠CDE,
而∠BGC=∠DGH,
∴∠DHG=∠GCB=90°, 即BG⊥DE.
∴BG=DE,BG⊥DE;
(2)BG和DE还有上述关系:BG=DE,BG⊥DE.
∵四边形ABCD,CEFG都是正方形,
∴CB=CD,CG=CE,∠BCD=∠GCE=90°
∵∠BCG=∠BCD+∠DCG,∠DCE=∠GCE+∠DCG
∴∠BCG=∠DCE
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
又∵∠BKC=∠DKH,
∴∠DHK=∠DCB=90° 即BG⊥DE.
∴BG=DE,BG⊥DE.
【题目】为“厉行节能减排,倡导绿色出行”,某公司拟在我县甲、乙两个街道社区试点投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型,投放情况如下表:
成本单价 (单位:元) | 投放数量(单位:辆) | 总价(单位:元) | |
A型 | 50 | 50 | |
B型 | 50 |
| |
成本合计(单位:元) | 7500 |
(1)根据表格填空:
本次试点投放的A、B型“小黄车”共有 辆;用含有的式子表示出B型自行车的成本总价为 ;
(2)试求A、B两种款型自行车的单价各是多少元?
(3)经过试点投放调查,现在该公司决定采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.