题目内容
如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是( )
A. | B. |
C. | D. |
A.
试题分析:连接AD,BD,OD,由AB为直径与四边形DCFE是正方形,即可证得△ACD∽△DCB,则可求得AC•BC=DC2=1,又由勾股定理求得AB的值,即可得AC+BC=AB,根据根与系数的关系即可求得答案.
连接AD,BD,OD,
∵AB为直径,
∴∠ADB=90°,
∵四边形DCFE是正方形,
∴DC⊥AB,
∴∠ACD=∠DCB=90°,
∴∠ADC+∠CDB=∠A+∠ADC=90°,
∴∠A=∠CDB,
∴△ACD∽△DCB,
∴,
又∵正方形CDEF的边长为1,
∵AC•BC=DC2=1,
∵AC+BC=AB,
在Rt△OCD中,,
∴,
∴AC+BC=AB=,
以AC和BC的长为两根的一元二次方程是
练习册系列答案
相关题目