题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中正确的结论是
- A.abc>0
- B.a+b>m(am+b),(m为实数且m≠1)
- C.b<a+c
- D.2a-b=0
B
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
解答:A、由二次函数的图象开口向下可得a<0,由抛物线与y轴交于x轴上方可得c>0,由x=1,得出-=1,故b>0,则abc<0,故此选项错误;
B.∵当x=1时,y最大,即a+b+c最大,故a+b+c>am2+bm+c,即a+b>m(am+b),(m为实数且m≠1),故此选项正确;
C、把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y<0,即a-b+c<0,a+c<b,故选项错误;
D.由x=1,得出-=1,故b=-2a,故选项错误;
故选:B.
点评:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
解答:A、由二次函数的图象开口向下可得a<0,由抛物线与y轴交于x轴上方可得c>0,由x=1,得出-=1,故b>0,则abc<0,故此选项错误;
B.∵当x=1时,y最大,即a+b+c最大,故a+b+c>am2+bm+c,即a+b>m(am+b),(m为实数且m≠1),故此选项正确;
C、把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y<0,即a-b+c<0,a+c<b,故选项错误;
D.由x=1,得出-=1,故b=-2a,故选项错误;
故选:B.
点评:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |