题目内容
【题目】如图,在△ABC中,∠A=120°,∠B=40°,如果过点A的一条直线l把△ABC分割成两个等腰三角形,直线l与BC交于点D,那么∠ADC的度数是_____.
【答案】140°或80°
【解析】
首先需要根据题意画出相应的图形,再根据三角形的内角和定理求出∠C的度数;
根据等腰三角形的性质可得∠DAC=∠C或∠DAC=∠ADC,进而结合三角形的内角和定理求出∠ADC的度数即可.
解:分两种情况:
①如图1,把120°的角分为100°和20°,
则△ABD与△ACD都是等腰三角形,其顶角的度数分别是100°,140°;
∴∠ADC=140°
②把120°的角分为40°和80°,
则△ABD与△ACD都是等腰三角形,其顶角的度数分别是100°,20°,
∴∠ADC=80°,
故答案为140°或80°.
练习册系列答案
相关题目
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格万元台 | a | b |
处理污水量吨月 | 240 | 200 |
求a,b的值;
治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
在的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.