题目内容
(1)计算;|-1|-
-(5-π)0+2tan60°
(2)依据下列解方
=
的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.
解:原方程可变形
=
______去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.______,得9x-4x=-15-2.______合并,得5x=-17.______,得x=-
.
(1)解:原式=1-
×2
-1+2
=1-
-1+2
=
;
(2)解:分数的基本性质;移项;等式性质1;系数化为1.
分析:(1)根据零指数幂和特殊角的三角函数值得到原式=1-
×2
-1+2
,再进行乘法运算,然后合并即可;
(2)先根据分数的基本性质把系数化为整系数得到
=
,再去分母得到3(3x+5)=2(2x-1),接着去括号得到9x+15=4x-2,然后移项、合并、把系数化为1得到方程的解.
点评:本题考查了解分式方程:先去分母,把分式方程化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.也考查了零指数幂和特殊角的三角函数值.
(2)解:分数的基本性质;移项;等式性质1;系数化为1.
分析:(1)根据零指数幂和特殊角的三角函数值得到原式=1-
(2)先根据分数的基本性质把系数化为整系数得到
点评:本题考查了解分式方程:先去分母,把分式方程化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.也考查了零指数幂和特殊角的三角函数值.
练习册系列答案
相关题目