题目内容
【题目】如图,在正方形ABCD中,AD=,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____________.
【答案】
【解析】分析:根据旋转的想知道的PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2-2,PE=4-2,过P作PF⊥CD于F,即可解答.
详解:如图:过P作PF⊥CD于F.
∵四边形ABCD是正方形,
∴∠ABC=90°,
∵把边BC绕点B逆时针旋转30°得到线段BP,
∴PB=BC=AB,∠PBC=30°,
∴∠ABP=60°,
∴△ABP是等边三角形,
∴∠BAP=60°,AP=AB=2,
∵AD=2,
∴AE=4,DE=2,
∴CE=22,PE=42,
∴PF=PE=23,
∴三角形PCE的面积=CEPF=×(22)×(23)=95,
故答案为:95.
练习册系列答案
相关题目