题目内容
【题目】某新建成学校举行美化绿化校园活动,九年级计划购买,两种花木共100棵绿化操场,其中花木每棵50元,花木每棵100元.
(1)若购进,两种花木刚好用去8000元,则购买了两种花木各多少棵?
(2)如果购买花木的数量不少于花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用?
【答案】(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
【解析】
试题分析:(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
试题解析:(1)设购买A种花木x棵,B种花木y棵,
根据题意,得:,解得:,
答:购买A种花木40棵,B种花木60棵;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,
根据题意,得:100﹣a≥a,解得:a≤50,
设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,
∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,
答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
【题目】甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):
次数 运动员 环数 | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同学计算出了甲的成绩平均数是9,方差是,请作答:
(1)在图中用折线统计图将甲运动员的成绩表示出来;
(2)若甲、乙的射击成绩平均数都一样,则 ;
(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出的所有可能取值,并说明理由.
【题目】在一次体育达标测试中,九年级(2)班15名男生的引体向上成绩如下表:问这15名男生的引体向上成绩的中位数和众数分别是( )
成绩/个 | 8 | 9 | 11 | 12 | 13 | 15 |
人数 | 1 | 2 | 3 | 4 | 3 | 2 |
A.12,13B.12,12C.11,12D.3,4