题目内容
(2005•日照)如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2上的点,连接AB,过O1作O1C⊥BA于C,连接CO2.已知PA=,PB=4.(1)求证:BA是⊙O1的切线;
(2)求∠BCO2的正切值.
【答案】分析:(1)由题意得O1C⊥BA,证得O1C为半径即可;
(2)应把∠BCO2进行转移,转移到已求得的线段的比值.
解答:(1)证明:∵PB是⊙O2的直径,A为⊙O2上的点,
∴∠PAB=90°.
又∵O1C⊥BA,
∴△PAB∽△O1CB.
∵PA=,PB=4,
∴01C=1.
∴O1C是⊙O1的半径,
∵O1C⊥BA于C,
∴BA是⊙O1的切线.
(2)解:BC==,
连接PC;
∵∠B=∠B,∠BCO2=∠BPC,
∴△BPC∽△BCO2,
∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2,
(在Rt△PCO2中,tanBPC=O2C:CP)
∴tanBCO2=.
点评:证得直线为切线的条件:到圆心的距离等于半径,与半径垂直;要求的三角函数值需转移到已知的线段的比.
(2)应把∠BCO2进行转移,转移到已求得的线段的比值.
解答:(1)证明:∵PB是⊙O2的直径,A为⊙O2上的点,
∴∠PAB=90°.
又∵O1C⊥BA,
∴△PAB∽△O1CB.
∵PA=,PB=4,
∴01C=1.
∴O1C是⊙O1的半径,
∵O1C⊥BA于C,
∴BA是⊙O1的切线.
(2)解:BC==,
连接PC;
∵∠B=∠B,∠BCO2=∠BPC,
∴△BPC∽△BCO2,
∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2,
(在Rt△PCO2中,tanBPC=O2C:CP)
∴tanBCO2=.
点评:证得直线为切线的条件:到圆心的距离等于半径,与半径垂直;要求的三角函数值需转移到已知的线段的比.
练习册系列答案
相关题目