题目内容

【题目】如图,在边长为8的正方形ABCD中,点OAD上一动点(4OA8),以O为圆心,OA的长为半径的圆交边CD于点E,连接OEAE,过点E作⊙O的切线交边BCF

1)求证:ODE∽△ECF

2)在点O的运动过程中,设DE=

①求的最大值,并求此时⊙O的半径长;

②判断CEF的周长是否为定值,若是,求出CEF的周长;否则,请说明理由?

【答案】(1)证明见解析;(2)①5;②16.

【解析】试题分析:(1)根据∠OEF=90°得出∠OED+∠CEF=90°,根据∠CEF+∠CFE=90°得出∠OED=∠EFC,最后根据∠D=∠C即可证出△ODE∽△ECF;

(2)①根据△ODE∽△ECF,得出ODCF=DEEC,设DE=x,得出ODCF=-(x-4)2+16,从而求出最大值,设此时半径为r,根据OD2+DE2=OE2,得出(8-r)2+42=r2,解方程即可;

②在RtODE中,根据OD2+DE2=OE2,OA=OE,得出(8-OE)2+x2=OE2,求出OE=4+,OD=4-,根据RtDOERtCEF,得出,代入得出CF=,EF=,最后根据△CEF的周长=CE+CF+EF代入计算即可得出△CEF的周长=16,是定值.

试题解析:(1)证明:∵EF切⊙O于点M,

∴∠OEF=90°,

∴∠OED+∠CEF=90°,

∵∠C=90°,

∴∠CEF+∠CFE=90°,

∴∠OED=∠EFC,

∵∠D=∠C=90°,

∴△ODE∽△ECF;

(2)解:①由(1)知:△ODE∽△ECF,

∴ODCF=DEEC,

∵DE=x,

∴EC=8-x,

∴ODCF=x(8-x)=-x2+8x=-(x-4)2+16,

x=4时,ODCF的值最大,最大值为16,

设此时半径为r,则OA=OE=r,OD=8-r,

Rt△ODE中,

∵OD2+DE2=OE2

∴(8-r)2+42=r2

解得r=5,

即此时半径长为5;

②△CEF的周长为定值,△CEF的周长=16,

Rt△ODE中,OD2+DE2=OE2,OA=OE,

即:(8-OE)2+x2=OE2

OE=4+,OD=8-OE=4-

∵Rt△DOE∽Rt△CEF,

解得:CF=,EF=

∴△CEF的周长=CE+CF+EF=8-x++=16.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网