题目内容
【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°,AC=2,则BD的长为( )
A.6
B.2
C.
D.3
【答案】B
【解析】解:∵AB⊥AC,
∴∠BAC=90°,
∵四边形ABCD是平行四边形,AC=2,
∴AD∥BC,AO= AC=1,BD=2BO,
∵∠DAC=45°,
∴∠ACB=∠DAC=45°,
∴∠ABC=180°﹣90°﹣45°=45°,
∴∠ABC=∠ACB,
∴AB=AC=2,
由勾股定理得:BO= =
,
∴BD=2BO=2 ,
故选B.
【考点精析】利用平行线的性质和三角形的内角和外角对题目进行判断即可得到答案,需要熟知两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目