题目内容
【题目】 抛物线与轴交于点(在的左侧),与轴交于点.
⑴求直线的解析式;
⑵抛物线的对称轴上存在点,使,利用图求点的坐标;
⑶点在轴右侧的抛物线上,利用图比较与的大小,并说明理由.
【答案】(1)y=﹣x+3;(2)(1,2+2)或(1,﹣2﹣2),(3)当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ..
【解析】
试题分析:.(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;
(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;
(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.
试题解析:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,
∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,
把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;
(2)∵OB=OC,∴∠ABC=45°,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,
设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,
∵∠APB=∠ABC=45°,且PA=PB,
∴∠PBA=,∠DPB=∠APB=22.5°,
∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,
在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,
∴PE=2+2,∴P(1,2+2);
当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);
综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);
(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,
当∠OCA=∠OCQ时,则△QEC∽△AOC,
∴,即,解得x=0(舍去)或x=5,
∴当Q点横坐标为5时,∠OCA=∠OCQ;
当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;
当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.