题目内容
请你仔细阅读下列材料:计算:
解法:按常规方法计算
原式
解法:简便计算,先求其倒数
原式的倒数为:
故
再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:.
如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是( )
A. ①③ B. ②③ C. ③④ D. ②④
计算:﹣14﹣(﹣22)+(﹣36)
已知抛物线y=ax2+bx+c(a≠0)是由抛物线y=﹣x2+x+2先作关于y轴的轴对称图形,再将所得到的图象向下平移3个单位长度得到的,点Q1(﹣2.25,q1),Q2(1.5,q2)都在抛物线y=ax2+bx+c(a≠0)上,则q1,q2的大小关系是( )
A. q1>q2 B. q1<q2 C. q1=q2 D. 无法确定
下列运算正确的是( )
A. (a5)2=a10 B. x16÷x4=x4 C. 2a2+3a2=5a4 D. b3•b3=2b3
在数 ?6, ?3, ?2, 1, 6中,取三个数相乘,能够得到最大的乘积是_________,再从中取三个数相加,能够得到最小的和是__________.
若单项式与是同类项,则mn=_______.
计算:
先化简,再求值,其中,.
数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_____.