题目内容
【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB= ,求线段OE的长.
【答案】
(1)解:∵∠CAB=∠ACB,
∴AB=CB,
∴ABCD是菱形.
∴AC⊥BD
(2)解:在Rt△AOB中,cos∠CAB= = ,AB=14,
∴AO=14× = ,
在Rt△ABE中,cos∠EAB= = ,AB=14,
∴AE= AB=16,
∴OE=AE﹣AO=16﹣ =
【解析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.
【考点精析】本题主要考查了平行四边形的性质和解直角三角形的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.
练习册系列答案
相关题目
【题目】某城市自来水收费实行阶梯水价,收费标准如下表所示:
月用水量 | 不超过12吨的部分 | 超过12吨的部分且 不超过18吨的部分 | 超过18吨的部分 |
收费标准 | 2元/吨 | 2.5元/吨 | 3元/吨 |
(1)某用户四月份用水量为16吨,需交水费为多少元?
(2)某用户五月份交水费50元,所用水量为多少吨?
(3)某用户六月份用水量为a吨,需要交水费为多少元?