题目内容
【题目】(2016浙江省舟山市第23题)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究;
如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;
(3)应用拓展;
如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.
【答案】(1)、矩形或正方形;(2)、AC=BD,理由见解析;(3)、10或12﹣.
【解析】
试题分析:(1)、矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)、AC=BD,理由为:连接PD,PC,如图1所示,根据PE、PF分别为AD、BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)、分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.
试题解析:(1)、矩形或正方形;
(1)、AC=BD,理由为:连接PD,PC,如图1所示:
∵PE是AD的垂直平分线,PF是BC的垂直平分线, ∴PA=PD,PC=PB, ∴∠PAD=∠PDA,∠PBC=∠PCB,
∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC, ∴∠APC=∠DPB, ∴△APC≌△DPB(SAS), ∴AC=BD;
(3)、分两种情况考虑:
(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E, 如图3(i)所示,
∴∠ED′B=∠EBD′, ∴EB=ED′, 设EB=ED′=x, 由勾股定理得:42+(3+x)2=(4+x)2, 解得:x=4.5,
过点D′作D′F⊥CE于F, ∴D′F∥AC, ∴△ED′F∽△EAC, ∴,即,
解得:D′F=,
∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,
则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;
(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E, 如图3(ii)所示,
∴四边形ECBD′是矩形, ∴ED′=BC=3, 在Rt△AED′中,根据勾股定理得:AE=,
∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,
则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.