题目内容
【题目】如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数: ;点P表示的数用含t的代数式表示为 .
(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?
(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.
【答案】
(1)解:8-14=-6;因此B点为-6;故答案为:-6,解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t
(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;
所以①P在Q的右侧时
8-4t-(-2t-6)=2
解得x=6
②P在Q左侧时
-2t-6-(8-4t)=2
解得x=8
答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.
故答案为:6或8秒
(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t
因点M为线段AP的中点,点N为线段BP的中点
所以MP=AP=2t;NP=BP=7-2t
MN=MP+NP=2t+7-2t=7
②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14
因点M为线段AP的中点,点N为线段BP的中点
所以MP=AP=2t;NP=BP=2t-7
MN=MP-NP=2t-(2t-7)=7
因此在点P的运动过程中,线段MN的长度不变, MN=7
【解析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;
②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t
(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q左侧或右侧的情况,由此列方程,易得结果为6或8秒;
(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.