题目内容

(2013•玉林)如图,抛物线y=-(x-1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(-1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
分析:(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标;
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形;
(3)△COB沿x轴向右平移过程中,分两个阶段:
(I)当0<t≤
3
2
时,如答图2所示,此时重叠部分为一个四边形;
(II)当
3
2
<t<3时,如答图3所示,此时重叠部分为一个三角形.
解答:解:(1)∵点A(-1,0)在抛物线y=-(x-1)2+c上,
∴0=-(-1-1)2+c,得c=4,
∴抛物线解析式为:y=-(x-1)2+4,
令x=0,得y=3,∴C(0,3);
令y=0,得x=-1或x=3,∴B(3,0).

(2)△CDB为直角三角形.理由如下:
由抛物线解析式,得顶点D的坐标为(1,4).
如答图1所示,过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB-OM=2.
过点C作CN⊥DM于点N,则CN=1,DN=DM-MN=DM-OC=1.
在Rt△OBC中,由勾股定理得:BC=
OB2+OC2
=
32+32
=3
2

在Rt△CND中,由勾股定理得:CD=
CN2+DN2
=
12+12
=
2

在Rt△BMD中,由勾股定理得:BD=
BM2+DM2
=
22+42
=2
5

∵BC2+CD2=BD2
∴△CDB为直角三角形(勾股定理的逆定理).

(3)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),
3k+b=0
b=3

解得k=-1,b=3,
∴y=-x+3,
直线QE是直线BC向右平移t个单位得到,
∴直线QE的解析式为:y=-(x-t)+3=-x+3+t;
设直线BD的解析式为y=mx+n,∵B(3,0),D(1,4),
3m+n=0
m+n=4

解得:m=-2,n=6,
∴y=-2x+6.
连接CQ并延长,射线CQ交BD于点G,则G(
3
2
,3).
在△COB向右平移的过程中:
(I)当0<t≤
3
2
时,如答图2所示:
设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3-t.
设QE与BD的交点为F,则:
y=-2x+6
y=-x+3+t
,解得
x=3-t
y=2t
,∴F(3-t,2t).
S=S△QPE-S△PBK-S△FBE=
1
2
PE•PQ-
1
2
PB•PK-
1
2
BE•yF=
1
2
×3×3-
1
2
(3-t)2-
1
2
t•2t=-
3
2
t2+3t;
(II)当
3
2
<t<3时,如答图3所示:
设PQ分别与BC、BD交于点K、点J.
∵CQ=t,
∴KQ=t,PK=PB=3-t.
直线BD解析式为y=-2x+6,令x=t,得y=6-2t,
∴J(t,6-2t).
S=S△PBJ-S△PBK=
1
2
PB•PJ-
1
2
PB•PK=
1
2
(3-t)(6-2t)-
1
2
(3-t)2=
1
2
t2-3t+
9
2

综上所述,S与t的函数关系式为:
S=
-
3
2
t2+3t(0<t≤
3
2
)
1
2
t2-3t+
9
2
(
3
2
<t<3)
点评:本题是运动型二次函数综合题,考查了二次函数的图象与性质、待定系数法、一次函数的图象与性质、勾股定理及其逆定理、图形面积计算等知识点.难点在于第(3)问,弄清图形运动过程是解题的先决条件,在计算图形面积时,要充分利用各种图形面积的和差关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网