题目内容
解方程:
(1)x2﹣4x﹣3=0;
(2)(2x+1)2=(2﹣x)2.
解方程组:
下列各式计算正确的是()
A. B. C. D.
若am=2,an=5,则am+n=________;若2x+1=16,则x=________.
已知,如图,抛物线与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
(本题满分8分)三角形两边长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,求此三角形的面积.
要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是
A. 5个 B. 6个 C. 7个 D. 8个
把一张长方形纸条按图中折叠后,若,则 __________ 度
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.
(1)求经过B、E、C三点的抛物线的解析式;
(2)若点P为线段FG上一个动点(与F、G不重合),当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,请求出此时点P的坐标;
(3)若点P为直线FG上一个动点,Q为抛物线上任一点,抛物线的顶点为N,探究以P、Q、M、N为顶点的四边形能否成为平行四边形?若能,请直接写出点P的坐标;若不能,请说明理由.