题目内容

(2012•南宁)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为6
3
米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
分析:首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGE中即可求得BG的长,从而求得树高.
解答:解:∵底部B点到山脚C点的距离BC为6
3
米,山坡的坡角为30°.
∴在Rt△BDC中
DC=BC•cos30°=6
3
3
2
=9米,
∵CF=1米,
∴DF=9+1=10米,
∴GE=10米,
∵∠AEG=45°,
∴AG=EG=10米,
在直角三角形BGE中,
BG=GE•tan20°=10×0.36=3.6米,
∴AB=AG-BG=10-3.6=6.4米,
答:树高约为6.4米.
点评:本题考查了解直角三角形的应用,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网