题目内容

【题目】已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求点A的坐标;

(2)点E在y轴负半轴上,直线ECAB,交线段AB于点C,交x轴于点D,SDOE=16.若反比例函数y=的图象经过点C,求k的值;

(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

【答案】(1)(-8,0)(2)k=- (3)(﹣1,3)或(0,2)或(0,6)或(2,6)

【解析】

(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;
(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;
(3)分四种情形分别求解即可解决问题;

(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,

∴OB=4,

在RtAOB中,tan∠BAO=

∴OA=8,

∴A(﹣8,0).

(2)∵EC⊥AB,

∴∠ACD=∠AOB=∠DOE=90°,

∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,

∵∠ADC=∠ODE,

∴∠OAB=∠DEO,

∴△AOB∽△EOD,

OE:OD=OA:OB=2,设OD=m,则OE=2m,

m2m=16,

m=4或﹣4(舍弃),

∴D(﹣4,0),E(0,﹣8),

直线DE的解析式为y=﹣2x﹣8,

∵A(﹣8,0),B(0,4),

直线AB的解析式为y=x+4,

,解得

∴C(),

若反比例函数y=的图象经过点C,

∴k=﹣

(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,

∴∠OBD=∠ODB=45°,

∴∠PNB=∠ONM=45°,

∴OM=DM=ON=2,

∴BN=2,PB=PN=

∴P(﹣1,3).

如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);

如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)

如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).

综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网