题目内容
【题目】如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠EDA等于( )
A.44°
B.68°
C.46°
D.77°
【答案】C
【解析】解:△ABC中,∠ACB=90°,∠A=22°, ∴∠B=90°﹣∠A=68°,
由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,
∴∠ADE=∠CED﹣∠A=46°,
故选C.
【考点精析】本题主要考查了三角形的内角和外角和翻折变换(折叠问题)的相关知识点,需要掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.
练习册系列答案
相关题目