题目内容
【题目】如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)
【答案】(1)证明见解析;(2)S阴=4﹣.
【解析】试题(1) 根据两直线平行,同位角相等,内错角相等,证明 ,利用全等三角形“SAS”判定定理,证明 ,得到OD⊥CD,所以CF为⊙O的切线.
(2) 利用三角函数和角度的关系,计算出OA,OC的长度和∠DOA的度数,分别求出四边形OACD和扇形OAD的面积,相减即可得到阴影部分的面积.
试题解析:(1)证明:如图连接OD.
∵四边形OBEC是平行四边形,
∴OC∥BE,
∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠DOC=∠AOC,
在△COD和△COA中,
,
∴△COD≌△COA,
∴∠CAO=∠CDO=90°,
∴CF⊥OD,
∴CF是⊙O的切线.
(2)解:∵∠F=30°,∠ODF=90°,
∴∠AOD=120°,
∵OD=OB,
∵∠DOC=∠AOC=60°,
∵EB=4,∴OD=2,CD=,
∴ .
【题目】某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 | 2号 | 3号 | 4号 | 5号 | 总成绩 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)求两班比赛数据的方差;
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.