题目内容
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作⊙O的切线与AC交于点F.
(1)求证:EF=CF;
(2)若AE=8,cosA=,求DF的长.
【答案】(1)见解析;(2)2.
【解析】分析:(1)连接OD,DE,先说明OD∥AC,由切线的性质得∠ODF=90°,从而∠DFC=90°,再证明DE=DC,根据三线合一结论可证;
(2)连接AD,BE,先说明DF是△BCE的中位线,从而DF=BE,在Rt△ABE中,求出AB和BE的长,进而可求出DF的长.
详解:(1)证明:连接OD,DE,
∵AB=AC,
∴∠ABC=∠C,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∵DF与⊙O相切,
∴OD⊥DF,即∠ODF=90°,
∴∠DFC=90°,即DF⊥AC,
∵∠ABC+∠AED=180°,∠AED+∠DEC=180°,
∴∠DEC=∠ABD=∠C,
∴DE=DC,
∴EF=FC;
(2)连接AD,BE,
∵AB是⊙O的直径,
∴∠ADB=∠AEB=90°,
∵AB=AC,
∴BD=DC,
∴DF是△BCE的中位线,
∴DF=BE,
在Rt△ABE中,
∵cos∠BAE=,
∴AB=,
根据勾股定理可得:BE=,
∴DF=.
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
【题目】某体育用品商场采购员要到厂家批发购买篮球和排球共个,篮球个数不少于排球个数,付款总额不得超过元,已知两种球厂的批发价和商场的零售价如下表. 设该商场采购个篮球.
品名 | 厂家批发价/元/个 | 商场零售价/元/个 |
篮球 | ||
排球 |
(1)求该商场采购费用(单位:元)与(单位:个)的函数关系式,并写出自变最的取值范围:
(2)该商场把这个球全都以零售价售出,求商场能获得的最大利润;
(3)受原材料和工艺调整等因素影响,采购员实际采购时,低球的批发价上调了元/个,同时排球批发价下调了元/个.该体有用品商场决定不调整商场零售价,发现将个球全部卖出获得的最低利润是元,求的值.