题目内容
三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.
1.在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);
2.△BCD是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由;
3.设,试求k的值;
4.如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,
请直接写出的值.
【答案】
1.如图所示
2.△BCD是黄金三角形.
证明如下:
∵点D在AB的垂直平分线上,
∴AD=BD,
∴∠ABD=∠A.
∵∠A=36°,AB=AC,
∴∠ABC=∠C=72°,
∴∠ABD=∠DBC=36°.
又∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴BD=BC,
∴△BCD是黄金三角形.
3.设BC=x,AC=y,
由(2)知,AD=BD=BC=x.
∵∠DBC=∠A,∠C=∠C,
∴△BDC∽△ABC,
∴,即,
整理,得,
解得./
因为x、y均为正数,所以.
4.
理由:延长BC到E,使CD=AC,连接AE.
∵∠A=36°,AB=AC,
∴∠ACB=∠B=72°,
∴∠ACE=180°-72°=108°,
∴∠ACE=∠B1A1C1.
∵A1B1=AB,
∴AC=CE=A1B1=A1C1,
∴△ACE≌△B1A1C1,
∴AE=B1C1.
由(3)知,,
∴,,
∴.
【解析】略
练习册系列答案
相关题目