题目内容
-2的倒数是( )
A. B. C. 2 D.
如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.
用关于x的代数式分别表示无盖纸盒的长和宽.
若纸盒的底面积为,求纸盒的高.
现根据中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为的矩形图案如图3所示,每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于,求x的取值范围和y的最小值.
点在反比例函数的图象上,则下列各点在此函数图象上的是
A. B. C. D.
如图,四边形ABCD为⊙O的内接四边形,已知∠BOD= 100°,则∠BCD=____。
将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为( )
A. 10° B. 15° C. 20° D. 25°
如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.
甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.
(1)租用一辆甲种客车、一辆乙种客车各多少元?
(2)设租用甲种客车x辆,总租车费为y元,求y与x的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
已知直角三角形两边的长为3和4,则此三角形的周长为( )
A. 12 B. 7+ C. 12或7+ D. 以上都不对