题目内容

24、(1)计算:(4xy-x2-y2)-(x2-y2+6xy)
(2)计算:x(x-1)+(2x+5)(2x-5)
(3)已知2x=y+15,求[(x2+y2)-(x-y)2+2y(x-y)]÷2y的值.
分析:(1)先去括号,再合并同类项;
(2)由于原式中含有括号,则先去括号,然后进行加减运算合并同类项;
(3)把[(x2+y2)-(x-y)2+2y(x-y)]÷2y化简为-y+2x,再整体代入即可求值.
解答:解:(1)(4xy-x2-y2)-(x2-y2+6xy)
=4xy-x2-y2-x2+y2-6xy
=(-1-1)x2+(-1+1)y2+(4-6)xy
=-2x2-2xy;

(2)x(x-1)+(2x+5)(2x-5)
=x2-x+4x2-25
=5x2-x-25;

(3)[(x2+y2)-(x-y)2+2y(x-y)]÷2y
=[x2+y2-(x2-2xy+y2)+2xy-2y2]÷2y
=(x2+y2-x2+2xy-y2+2xy-2y2)÷2y
=(-2y2+4xy)÷2y
=-y+2x…(2分)
由于2x=y+15,则-y+2x=15,代入原式=15.
点评:(1)题解题要注意正确合并同类项;整式的加减中去括号时要看括号外的因数是正数还是负数(正数时,去括号后原括号内各项的符合与原来的符合相同;负数时,去括号后原括号内各项的符合与原来的符合相反).
(2)题考查了完全平方公式,单项式乘多项式,应先去括号,然后再合并同类项.
(3)题首先利用公式化简,然后利用整体代入的思想即可求出结果.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网