题目内容
【题目】某货运公司接到吨物资运载任务,现有甲、乙、丙三种车型的汽车供选择,每辆车的运载能力和运费如表:
车型 | 甲 | 乙 | 丙 |
汽车运载量(吨/辆) | 5 | 8 | 10 |
汽车运费(元/辆) | 400 | 500 | 600 |
(1)甲种车型的汽车辆,乙种车型的汽车辆,丙种车型的汽车辆,它们一次性能运载 吨货物.
(2)若全部物资都用甲、乙两种车型的汽车来运送,需运费元,求需要甲、乙两种车型的汽车各多少辆?
(3)为了节省运费,该公司打算用甲、乙、丙三种车型的汽车共辆同时参与运送,请你帮货运公司设计派车方案;并求出各种派车方案的运费.
【答案】(1)74;(2)甲车型的汽车有8辆,乙车型的汽车有10辆;(3)派车方案有两种:甲车型的汽车有2辆,乙车型的汽车有10辆,丙车型的汽车有3辆,运费为7600元;甲车型的汽车有4辆,乙车型的汽车有5辆,丙车型的汽车有6辆,运费为7700元.
【解析】
(1)用每种车型的数量×各自的运载量,然后将结果相加即可得出答案;
(2)设甲车型的汽车有x辆,乙车型的汽车有y辆,根据题意列出二元一次方程组,解方程组即可得出答案;
(3)设甲车型的汽车有a辆,乙车型的汽车有b辆,丙车型的汽车有c辆,根据题意列出方程,再根据a,b,c都是正整数且a,b,c均不为0,即可确定a,b,c的值,进而可确定派车方案的运费.
(1)甲种车型的汽车辆,乙种车型的汽车辆,丙种车型的汽车辆,它们一次性能运载货物的数量为: (吨);
(2)设甲车型的汽车有x辆,乙车型的汽车有y辆,根据题意有
解得
所以甲车型的汽车有8辆,乙车型的汽车有10辆;
(3)设甲车型的汽车有a辆,乙车型的汽车有b辆,丙车型的汽车有c辆,根据题意有
消去c得
∵a,b,c都是正整数,且a,b,c均不为0,
∴ 或
∴派车方案有两种:甲车型的汽车有2辆,乙车型的汽车有10辆,丙车型的汽车有3辆;甲车型的汽车有4辆,乙车型的汽车有5辆,丙车型的汽车有6辆;
当时,运费为: (元);
当时,运费为: (元);
综上所述,派车方案有两种:甲车型的汽车有2辆,乙车型的汽车有10辆,丙车型的汽车有3辆,运费为7600元;甲车型的汽车有4辆,乙车型的汽车有5辆,丙车型的汽车有6辆,运费为7700元.
【题目】某市居民夏季(5月—10月)阶梯电价价目如右表.李叔叔家8月份用电500度,他家这个月要电费___元.张阿姨家8月份缴纳电费249.4元,她家这个月用电___度.(不计公共分摊部分).
阶梯 | 电量(度) | 电价/度 |
第一档 | 0—260部分 | 0.59元 |
第二档 | 261—600部分 | 0.64元 |
第三档 | 601度以上部分 | 0.89元 |