题目内容

【题目】如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N

(1)求证:AE=MN;
(2)若AE=2,∠DAE=30°,求正方形的边长.

【答案】
(1)

证明:连接EC.

∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,

∴∠NCM=∠CME=∠CNE=90°,

∴四边形EMCN为矩形.

∴MN=CE.

又∵BD为正方形ABCD的对角线,

∴∠ABE=∠CBE.

在△ABE和△CBE中

∴△ABE≌△CBE(SAS).

∴AE=EC.

∴AE=MN.


(2)

解:过点E作EF⊥AD于点F,

∵AE=2,∠DAE=30°,

∴EF= AE=1,AF=AEcos30°=2× =

∵BD是正方形ABCD的对角线,

∴∠EDF=45°,

∴DF=EF=1,

∴AD=AF+DF= +1,即正方形的边长为 +1.


【解析】(1)连接EC,根据题意可得出四边形EMCN为矩形,故MN=CE,再由SAS定理得出△ABE≌△CBE,进而可得出结论;(2)过点E作EF⊥AD,由直角三角形的性质可得出EF及AF的长,再由等腰直角三角形的性质得出DF的长,进而可得出结论.
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网