题目内容

精英家教网如图所示,以△ABC的三边为边在BC的同侧作正三角形BCE,正三角形ABF和正三角形ACD,已知BC=3,高AH=1,则五边形BCDEF的面积是
 
分析:由正△ABF、正△BCE、正△ACD和正△BCE可知:△ABC≌△FBE≌△DEC,所以S△ABC=S△FBE=S△DEC=
1
2
×3×1=
3
2
,又因为S△BCE=
1
2
×3×3×sin60°=
9
4
×
3
,所以五边形BCDEF的面积=S△BCE+S△FBE+S△DEC
解答:解:∵正三角形ABF和正△BCE
∴AB=BF  BC=BE∠ABC=∠FBE=60°-∠EBA
∴△ABC≌△FBE
同理∵正三角形ACD和BCE
∴AC=DC  BC=EC∠ACB=∠DCE=60°-∠ECA
∴△ABC≌△DEC
∴△ABC≌△FBE≌△DEC
∴S△ABC=S△FBE=S△DEC=
1
2
×3×1=
3
2

又∵S△BCE=
1
2
×3×3×sin60°=
9
4
×
3

∴五边形BCDEF的面积=S△BCE+S△FBE+S△DEC=
9
4
×
3
+
3
2
+
3
2
=3+
9
3
4
点评:解决本题的关键是根据所给条件得到所求的五边形的组成的相应的三角形全等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网