题目内容
不论k为何值,解析式(2k-1)x-(k+3)y-(k-11)=0表示的函数的图象经过一定点,则这个定点是________.
(2,3)
分析:将一次函数(2k-1)x-(k+3)y-(k-11)=0,整理为(2x-y)k-(x+3y)=k-11,从而求得定点坐标.
解答:由(2k-1)x-(k+3)y-(k-11)=0,
得:(2x-y)k-(x+3y)=k-11.
不论k为何值,上式都成立.
所以2x-y=1,x+3y=11,
解得:x=2,y=3.
即不论k为何值,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过定点(2,3).
故答案是:(2,3).
点评:本题考查了一次函数图象上点的坐标特征.恒过一个定点,那么应把所给式子整理成左右都含k的等式.
分析:将一次函数(2k-1)x-(k+3)y-(k-11)=0,整理为(2x-y)k-(x+3y)=k-11,从而求得定点坐标.
解答:由(2k-1)x-(k+3)y-(k-11)=0,
得:(2x-y)k-(x+3y)=k-11.
不论k为何值,上式都成立.
所以2x-y=1,x+3y=11,
解得:x=2,y=3.
即不论k为何值,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过定点(2,3).
故答案是:(2,3).
点评:本题考查了一次函数图象上点的坐标特征.恒过一个定点,那么应把所给式子整理成左右都含k的等式.
练习册系列答案
相关题目