题目内容

【题目】如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.

(1)请写出点C的坐标为 , 点D的坐标为 , S四边形ABDC
(2)点Q在y轴上,且SQAB=S四边形ABDC , 求出点Q的坐标;
(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.

【答案】
(1)(0,2);(4,2);8
(2)

解:∵点Q在y轴上,设Q(0,m),

∴OQ=|m|,

∴SQAB= ×AB×OQ= ×4×|m|=2|m|,

∵S四边形ABDC=8,

∴2|m|=8,

∴m=4或m=﹣4,

∴Q(0,4)或Q(0,﹣4)


(3)

解:如图

∵线段CD是线段AB平移得到,

∴CD∥AB,

作PE∥AB,

∴CD∥PE,

∴∠CPE=∠DCP,

∵PE∥AB,

∴∠OPE=∠BOP,

∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,

∴∠CPO=∠DCP+∠BOP


【解析】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,
且(﹣1,0),B(3,0),
∴C(0,2),D(4,2);
∵AB=4,OC=2,
∴S四边形ABDC=AB×OC=8;
所以答案是:(0,2);(4,2);8;
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对平行四边形的判定的理解,了解两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网