题目内容
【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.
【答案】(1)y=﹣x2+2x+3;(2) C(0,3),D(1,4);(3) P(2,3)
【解析】试题分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c的值,进而可得到抛物线的对称轴方程;
(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;
(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.
(1)由点A(﹣1,0)和点B(3,0)得: ,解得: ,∴抛物线的解析式为;
(2)令x=0,则y=3,∴C(0,3),∵=﹣(x﹣1)2+4,∴D(1,4);
(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S△ABP=4S△COE,∴2y=4×,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).
练习册系列答案
相关题目
【题目】父亲告诉小明:“距离地面越高,温度越低”,并给小明出示了下面的表格:
距离地面高度(千米)h | 0 | 1 | 2 | 3 | 4 | 5 |
温度(℃)t | 20 | 14 | 8 | 2 | ﹣4 | ﹣10 |
根据表中,父亲还给小明出了下面几个问题,请你帮助小明回答下列问题:
(1)表中自变量是 ;因变量是 ;当地面上(即h=0时)时,温度是 ℃.
(2)如果用h表示距离地面的高度,用t表示温度,请写出满足t与h关系的式子.
(3)计算出距离地面6千米的高空温度是多少?