题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
【答案】(1)30°;(2)证明见解析.
【解析】
试题(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.
(2)由ASA证明△ACD≌△ECD来推知DA=DE.
试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.
又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.
(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°. ∴∠ACD=∠ECD.
在△ACD与△ECD中,∵,∴△ACD≌△ECD(SAS).
∴DA=DE.
练习册系列答案
相关题目