题目内容
【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=﹣3.
(1)直接写出点C的坐标 ;
(2)直接写出点E的坐标 ;
(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.
【答案】(1)(-3,2);(2)(-2,0);(3)x+y=z,见解析
【解析】
(1)直接利用二次根式的性质得出a,b的值,即可得出答案;
(2)利用平移的性质得出点E的坐标;
(3)利用平行线的性质分析得出答案.
(1)∵a=+﹣3,
∴b=2,a=﹣3,
∵点C的坐标为(a,b),
∴点C的坐标为:(﹣3,2);
故答案为:(﹣3,2);
(2)∵点B在y轴上,点C的坐标为:(﹣3,2),
∴B点向左平移了3个单位长度,
∴A(1,0),向左平移3个单位得到:(﹣2,0)
∴点E的坐标为:(﹣2,0);
故答案为:(﹣2,0);
(3)x+y=z.证明如下:
如图,过点P作PN∥CD,
∴∠CBP=∠BPN
又∵BC∥AE,
∴PN∥AE
∴∠EAP=∠APN
∴∠CBP+∠EAP=∠BPN+∠APN=∠APB,
即x+y=z.
练习册系列答案
相关题目