题目内容
【题目】如图,双曲线y=(x<0)经过Rt△ABC的两个顶点A,C,∠ABC=90°,AB∥x轴,连接OA,将Rt△ABC沿AC翻折后得到Rt△AB′C,点B′刚好落在线段OA上,连接OC,OC恰好平分OA与x轴负半轴的夹角,若Rt△ABC的面积为2,则k的值为___.
【答案】﹣4.
【解析】
延长BC,与x轴交于点D,可得CD⊥x轴,作AE⊥x轴,如图所示,由折叠的性质得到Rt△ABC≌Rt△AB′C,再由角平分线定理得到BC=B′C=CD=b,AB=m,设A(-a,2b),根据题意求出mb=4,2ab=k,利用反比例函数的性质列出关于k的方程,求出方程的解即可得到k的值.
延长BC,与x轴交于点D,可得CD⊥x轴,作AE⊥x轴,如图所示,
∵Rt△ABC沿AC翻折后得到Rt△AB′C,且Rt△ABC的面积为1,
∴Rt△ABC≌Rt△AB′C,
∵OC平分∠AOD,CD⊥OD,CB′⊥OA,
∴CD=CB′=CB=b,
设AB=m,A(-a,2b),BC=b,则OD=-m-a,
bm=2,即bm=4,
∴S△COD=-k=ODCD=(m+a)b=(mb+ab)=(4-)=2-,
解得:k=-8.
故答案为:-8.
练习册系列答案
相关题目