题目内容
用换元法解方程x |
x-3 |
2x-6 |
x |
x |
x-3 |
分析:换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是
,设 y=
,换元后整理即可求得.
x |
x-3 |
x |
x-3 |
解答:解:把y=
,代入方程
-
=1,得:y-
-1=0.
方程两边同乘以y得:y2-y-2=0.
故答案为y2-y-2=0.
x |
x-3 |
x |
x-3 |
2x-6 |
x |
2 |
y |
方程两边同乘以y得:y2-y-2=0.
故答案为y2-y-2=0.
点评:本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.
练习册系列答案
相关题目
用换元法解方程(
)2-5(
)+6=0时,设
=y,则原方程化为关于y的方程是( )
x |
x-1 |
x |
x-1 |
x |
x-1 |
A、y2+5y+6=0 |
B、y2-5y+6=0 |
C、y2+5y-6=0 |
D、y2-5y-6=0 |
用换元法解方程(
)2+
-1=0,若设
=m,则原方程可变形为( )
x |
x-1 |
5x |
x-1 |
x |
x-1 |
A、m2+m-1=0 | ||
B、m2-
| ||
C、m-5m2-1=0 | ||
D、m2+5m-1=0 |
用换元法解方程(
)2-6(
)+5=0,令
=y,代入原方程后,变形正确的为( )
x |
x-1 |
x |
x-1 |
x |
x-1 |
A、y2+5=0 |
B、y2-6y=0 |
C、(y+1)(y+5)=0 |
D、(y-1)(y-5)=0 |