题目内容

如图所示,直角梯形中,,以所在直线为轴旋转一周,得到一个几何体,求它的全面积.
(8分)68Π

分析:所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和。
解答:
∵Rt△AOD中,AO=7-4=3cm,OD=4cm,
∴AD2=42+32=25
∴AD =5cm,
∴所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2
故它的全面积为68πcm2
点评:考查圆锥的计算和圆柱的计算;得到几何体的形状是解决本题的突破点;需掌握圆锥、圆柱侧面积的计算公式。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网