题目内容

【题目】在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的个数是(

①AC⊥DE;② =;③CD=2DH;④

A.1B.2C.3D.4

【答案】C

【解析】

试题分析:∵AD∥BC,∠ABC=90°

∴∠BAD=90°,

又∵AB=BC,

∴∠BAC=45°,

∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,

∴∠BAC=∠CAD,

∴AH⊥ED,

即AC⊥ED,故①正确;

∵△CHE为直角三角形,且∠HEC=60°

∴EC=2EH

∵∠ECB=15°,

∴EC≠4EB,

∴EH≠2EB;故②错误.

∵由证①中已知,∠BAC=∠CAD,

在△ACD和△ACE中,

∴△ACD≌△ACE(SAS),

∴CD=CE,

∵∠BCE=15°,

∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,

∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,

∴△CDE为等边三角形,

∴∠DCH=30°,

∴CD=2DH,故③正确;

过H作HM⊥AB于M,

∴HM∥BC,

∴△AMH∽△ABC,

∵∠DAC=∠ADH=45°,

∴DH=AH,

∵△BEH和△CBE有公共底BE,

,故④正确,

∴结论正确的个数是3.

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网