题目内容
【题目】已知,直线与反比例函数交于点,且点的横坐标为4,过轴上一点作垂直于交于点,如图.
(1)若点是线段上一动点,过点作,,垂足分别于、,求线段长度的最小值.
(2)在(1)的取得最小值的前提下,将沿射线平移,记平移后的三角形为,当时,在平面内存在点,使得、、、四点构成平行四边形,这样的点有几个?直接写出点的坐标.
【答案】(1)最小值为4.8;(2)这样的点有3个,;;.
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点A的坐标,由点A的坐标,利用待定系数法可求出直线0A的解析式,设点P的坐标为(m,m)(),则PE=m,PF=8-m,利用勾股定理可找出EF2关于m的函数关系式,再利用二次函数的性质,即可求出EF2的最小值,进而可得出段EF长度的最小值;
(2)由(1)的结论结合平移的性质,可得出平移后点、、的坐标.
解:(1)当x=4时,
∴
设直线OA的解析式为
将代入得k=
设点P的坐标为(m,m)() 则PE=m,PF=8-m
∴FE2=PF2+PE2即FE2=(m)2+(8-m)2=(m-)2+
∴当m=时,EF2取得最小值,此时EF最小值为
∴最小值为4.8.
(2)这样的点有3个.
;;
练习册系列答案
相关题目