题目内容
【题目】如图,在平面直角坐标系中,直线分别交轴、轴于点和点,且,满足.
(1)______,______.
(2)点在直线的右侧,且:
①若点在轴上,则点的坐标为______;
②若为直角三角形,求点的坐标.
【答案】(1)-2,4;(2)①;②点的坐标为或.
【解析】
(1)利用非负数的的性质即可求出a,b;
(2)①利用等腰直角三角形的性质即可得出结论;
②分两种情况,利用等腰三角形的性质,及全等三角形的性质求出PC,BC,即可得出结论
解:(1)由题意,得,
所以且,
解得,;
(2)①如图,由(1)知,b=4,
∴B(0,4),
∴OB=4,
点P在直线AB的右侧,且在x轴上,
∵∠APB=45°,
∴OP=OB=4,
∴点的坐标为.
②当时,过点作轴于点,
则,,
∴.
又∵,,
∴.
∴.
又∵,
∴.
∴,
.∴.
故点的坐标为.
当时,作轴,于点,
则, ,
∴ .
又∵,,
∴,
∴,
又∵ ,
∴.
,.
∴点的坐标为.
故点的坐标为或.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+bx(a≠0)中自变量x和函数值y的部分对应值如下表:
x | … | ﹣2.5 | ﹣2 | ﹣1 | 0 | 0.5 | … |
y | … | ﹣5 | 0 | 4 | 0 | ﹣5 | … |
(1)求二次函数解析式,并写出顶点坐标;
(2)在直角坐标系中画出该抛物线的图象;
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<﹣1,试比较y1与y2的大小,并说明理由.