题目内容

【题目】某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:

国外品牌

国内品牌

进价(元/部)

4400

2000

售价(元/部)

5000

2500

该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可毛获利润共2.7万元.[毛利润=(售价进价)×销售量]

(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?

(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.

【答案】(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.

【解析】

试题分析:(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;

(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.

试题解析:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:

,解得

答:商场计划购进国外品牌手机20部,国内品牌手机30部;

(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:

0.44(20a)+0.2(30+3a)15.6,

解得:a5,

设全部销售后获得的毛利润为w万元,由题意,得:

w=0.06(20a)+0.05(30+3a)=0.09a+2.7,

k=0.09>0,

w随a的增大而增大,

当a=5时,w最大=3.15,

答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网