题目内容

在△ABC中,若三边BC,CA,AB满足BC:CA:AB=5:12:13,则cosB=
5
13
5
13
分析:设比例的每一份为k,由比例式表示出三角形的三边,然后利用勾股定理的逆定理判断出此三角形为直角三角形,根据锐角三角函数定义,用∠B的对边AC比上斜边AB,化简后可得出cosB的值.
解答:解:由△ABC三边满足BC:CA:AB=5:12:13,
可设BC=5k,CA=12k,AB=13k,
∵BC2+CA2=(5k)2+(12k)2=25k2+144k2=169k2,AB2=(13k)2=169k2
∴BC2+CA2=AB2
∴△ABC为直角三角形,∠C=90°,
则cosB=
BC
AB
=
5k
13k
=
5
13

故答案为:
5
13
点评:此题考查了勾股定理的逆定理,比例的性质,以及锐角三角函数定义,利用勾股定理的逆定理判断出三角形为直角三角形是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网