搜索
题目内容
22、如图,是两个形状、大小完全一样的三角板,请将它们拼接成一个几何图形,使得这两个三角板有一边完全重合或一边部分重合,且拼接成的图形中有两组平行线.画出你所设计的图形,写出这两组平行线并说明平行的理由.
试题答案
相关练习册答案
分析:
有两组平行线,那么相等的角应组成这两组平行线的内错角.
解答:
解:
∵∠BAC=∠DEF
∴BC∥EF,
同理可得到AC∥FD.
点评:
本题考查学生的动手操作能力;应用的知识点为;内错角相等,两直线平行.
练习册系列答案
巴蜀英才课时达标讲练测系列答案
同步导学创新成功学习系列答案
导学同步岳麓书社系列答案
一品中考系列答案
金钥匙1加1中考总复习系列答案
教与学中考全程复习导练系列答案
中考总复习优化指导系列答案
A加资源与评价系列答案
本土攻略系列答案
高分必刷系列答案
相关题目
如图1、2是两个相似比为1:
2
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE
2
+BF
2
=EF
2
;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE
2
+BF
2
=EF
2
是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
如图1、2是两个相似比为1:
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE
2
+BF
2
=EF
2
;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE
2
+BF
2
=EF
2
是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
如图1、2是两个相似比为1:
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE
2
+BF
2
=EF
2
;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE
2
+BF
2
=EF
2
是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
如图1、2是两个相似比为1:
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE
2
+BF
2
=EF
2
;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE
2
+BF
2
=EF
2
是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
如图1、2是两个相似比为1:
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE
2
+BF
2
=EF
2
;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE
2
+BF
2
=EF
2
是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案