ÌâÄ¿ÄÚÈÝ
Èçͼ£¬µãB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬B3£¨3£¬y3£©¡£¬Bn£¨n£¬yn£©£¨nÊÇÕýÕûÊý£©ÒÀ´ÎΪһ´Îº¯Êýy=1 |
4 |
1 |
12 |
£¨1£©Ð´³öB2£¬BnÁ½µãµÄ×ø±ê£»
£¨2£©Çóx2£¬x3£¨Óú¬aµÄ´úÊýʽ±íʾ£©£»·ÖÎöͼÐÎÖи÷µÈÑüÈý½ÇÐεױ߳¤¶ÈÖ®¼äµÄ¹Øϵ£¬Ð´³öÄãÈÏΪ³ÉÁ¢µÄÁ½¸ö½áÂÛ£»
£¨3£©µ±a£¨0£¼a£¼1£©±ä»¯Ê±£¬ÔÚÉÏÊöËùÓеĵÈÑüÈý½ÇÐÎÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÏàÓ¦µÄaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÒòΪµãB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬B3£¨3£¬y3£©¡£¬Bn£¨n£¬yn£©£¨nÊÇÕýÕûÊý£©ÒÀ´ÎΪһ´Îº¯Êýy=
x+
µÄͼÏóÉϵĵ㣬ËùÒÔ·Ö±ðÁîx=2£¬x=n£¬Çó³öÏàÓ¦µÄyÖµ¼´¿É£»
£¨2£©ÒòΪ¡÷A1B1A2£¬¡÷A2B2A3£¬¡÷A3B3A4¡¡÷AnBnAn+1·Ö±ðÊÇÒÔB1£¬B2£¬B3£¬¡£¬BnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬ÀûÓõÈÑüÈý½ÇÐεױßÉϵĸߴ¹Ö±Æ½·Öµ×±ß£¬¿ÉÖªx2-1=1-x1£¬x3-2=2-x2£¬ÆäÖÐx1=a£¬ËùÒÔx2=2-a£¬x3=4-x2=2+a£¬
·ÖÎöͼÐÎÖи÷µÈÑüÈý½ÇÐεױ߳¤¶ÈÖ®¼äµÄ¹Øϵʱ£¬·ÖÁ½ÖÖÇé¿ö£¬µ±¶¥µãΪB1£¬B3£¬B5£¬µÈÆæÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2-2a£»¶¥µãΪB2£¬B4£¬B6£¬µÈżÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2a£»
£¨3£©¿ÉÉèµÚn¸öµÈÑüÈý½ÇÐÎÇ¡ºÃΪֱ½ÇÈý½ÇÐΣ¬ÄÇôÕâ¸öÈý½ÇÐεĵױߵÈÓÚ¸ßynµÄ2±¶£®Óɵڣ¨2£©Ð¡ÌâµÄ½áÂÛ¿ÉÖª£º
µ±nΪÆæÊýʱ£¬ÓÐ2-2a=2£¨
+
)£¬»¯¼òµÃµ½ÓÃa±íʾnµÄʽ×Ó£¬½áºÏaµÄÈ¡Öµ·¶Î§£¬Çó³önµÄÈ¡Öµ·¶Î§£¬ÀûÓÃnÊÇÕýÕûÊý£¬¼´¿ÉÇó³önµÄÖµ£»µ±nΪżÊýʱ£¬ÓÐ2a=2£¨
+
)£¬Í¬Ñù»¯¼òµÃµ½ÓÃa±íʾnµÄʽ×Ó£¬½áºÏaµÄÈ¡Öµ·¶Î§£¬Çó³önµÄÈ¡Öµ·¶Î§£¬ÀûÓÃnÊÇÕýÕûÊý£¬¼´¿ÉÇó³önµÄÖµ£®
1 |
4 |
1 |
12 |
£¨2£©ÒòΪ¡÷A1B1A2£¬¡÷A2B2A3£¬¡÷A3B3A4¡¡÷AnBnAn+1·Ö±ðÊÇÒÔB1£¬B2£¬B3£¬¡£¬BnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬ÀûÓõÈÑüÈý½ÇÐεױßÉϵĸߴ¹Ö±Æ½·Öµ×±ß£¬¿ÉÖªx2-1=1-x1£¬x3-2=2-x2£¬ÆäÖÐx1=a£¬ËùÒÔx2=2-a£¬x3=4-x2=2+a£¬
·ÖÎöͼÐÎÖи÷µÈÑüÈý½ÇÐεױ߳¤¶ÈÖ®¼äµÄ¹Øϵʱ£¬·ÖÁ½ÖÖÇé¿ö£¬µ±¶¥µãΪB1£¬B3£¬B5£¬µÈÆæÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2-2a£»¶¥µãΪB2£¬B4£¬B6£¬µÈżÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2a£»
£¨3£©¿ÉÉèµÚn¸öµÈÑüÈý½ÇÐÎÇ¡ºÃΪֱ½ÇÈý½ÇÐΣ¬ÄÇôÕâ¸öÈý½ÇÐεĵױߵÈÓÚ¸ßynµÄ2±¶£®Óɵڣ¨2£©Ð¡ÌâµÄ½áÂÛ¿ÉÖª£º
µ±nΪÆæÊýʱ£¬ÓÐ2-2a=2£¨
n |
4 |
1 |
12 |
n |
4 |
1 |
12 |
½â´ð£º½â£º£¨1£©B2(2£¬
)£¬Bn(n£¬
+
)£»
£¨2£©x2=2-a£¬x3=2+a£¬
½áÂÛ1£º¶¥µãΪB1£¬B3£¬B5£¬µÈÆæÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2-2a£¬
½áÂÛ2£º¶¥µãΪB2£¬B4£¬B6£¬µÈżÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2a£¬
½áÂÛ3£ºÃ¿ÏàÁÚµÄÁ½¸öµÈÑüÈý½ÇÐεױßÖ®ºÍ¶¼µÈÓÚ³£Êý2£®
£¨3£©ÉèµÚn¸öµÈÑüÈý½ÇÐÎÇ¡ºÃΪֱ½ÇÈý½ÇÐΣ¬ÄÇôÕâ¸öÈý½ÇÐεĵױߵÈÓÚ¸ßynµÄ2±¶£®Óɵڣ¨2£©Ð¡ÌâµÄ½áÂÛ¿ÉÖª£º
µ±nΪÆæÊýʱ£¬ÓÐ2-2a=2£¨
+
)£¬»¯¼òµÃ£ºn=-4a+
(0£¼a£¼1)£¬
¡à-
£¼n£¼
£¬¡àn=1»ò3
¡àa=
»ò
£¬
µ±nΪżÊýʱ£¬ÓÐ2a=2(
+
)£¬µÃ£ºn=4a-
(0£¼a£¼1)£¬
¡à-
£¼n£¼
£¬¡àn=2
¡àa=
£¬
×ÛÉÏËùÊö£¬´æÔÚÖ±½ÇÈý½ÇÐΣ¬ÇÒa=
»ò
»ò
£®
7 |
12 |
n |
4 |
1 |
12 |
£¨2£©x2=2-a£¬x3=2+a£¬
½áÂÛ1£º¶¥µãΪB1£¬B3£¬B5£¬µÈÆæÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2-2a£¬
½áÂÛ2£º¶¥µãΪB2£¬B4£¬B6£¬µÈżÊýλÖÃÉϵĵÈÑüÈý½ÇÐεױ߳¤¶¼µÈÓÚ2a£¬
½áÂÛ3£ºÃ¿ÏàÁÚµÄÁ½¸öµÈÑüÈý½ÇÐεױßÖ®ºÍ¶¼µÈÓÚ³£Êý2£®
£¨3£©ÉèµÚn¸öµÈÑüÈý½ÇÐÎÇ¡ºÃΪֱ½ÇÈý½ÇÐΣ¬ÄÇôÕâ¸öÈý½ÇÐεĵױߵÈÓÚ¸ßynµÄ2±¶£®Óɵڣ¨2£©Ð¡ÌâµÄ½áÂÛ¿ÉÖª£º
µ±nΪÆæÊýʱ£¬ÓÐ2-2a=2£¨
n |
4 |
1 |
12 |
11 |
3 |
¡à-
1 |
3 |
11 |
3 |
¡àa=
2 |
3 |
1 |
6 |
µ±nΪżÊýʱ£¬ÓÐ2a=2(
n |
4 |
1 |
12 |
1 |
3 |
¡à-
1 |
3 |
11 |
3 |
¡àa=
7 |
12 |
×ÛÉÏËùÊö£¬´æÔÚÖ±½ÇÈý½ÇÐΣ¬ÇÒa=
2 |
3 |
1 |
6 |
7 |
12 |
µãÆÀ£º±¾ÌâÐèÀûÓÃÊýÐνáºÏµÄ˼Ï룬Áé»îÔËÓÃÒ»´Îº¯ÊýͬµÈÑüÈý½ÇÐεÄÐÔÖÊÀ´½â¾öÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿