题目内容
【题目】我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)如图,在中,点,分别在,上,设,相交于点,若,.请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形?
(2)在中,如果是不等于的锐角,点,分别在,上,且.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
【答案】(1)与∠A相等的角是∠BOD、∠COE,四边形DBCE是等对边四边形;(2)存在等对边四边形DBCE,证明见解析;
【解析】
(1)根据三角形外角的性质可得∠BOD=60°,根据对顶角的性质可得∠COE=60°;作CG⊥BE于G点,作BF⊥C,D交CD延长线于F点通过证明△BCF≌△CBG,可得BF=CG,,再证明△BDF≌△CEG,即可证明四边形DBCE是等对边四边形;
(2)作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.易证△BCF≌△CBG,进而证明△BDF≌△CEG,所以BD=CE,所以四边形DBCE是等对边四边形.
(1)∵∠A=60°,
∴∠OBC=∠OCB=30°
∴∠BOD=∠COE=∠OBC+∠OCB=30°+30°=60°,
∴与∠A相等的角是∠BOD、∠COE,
四边形DBCE是等对边四边形,证明如下:
如图,作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.
∴∠BFC=∠CGB=∠CGE=90°
∵∠DCB=∠EBC=∠A,BC=BC,
∴△BCF≌△CBG,
∴BF=CG,
∵∠BDF=∠ABE+∠DOB,∠BEC=∠ABE+∠A,∠A=∠BOD
∴∠BDF=∠BEC,
又∵∠BFD=∠CGE=90°,BF=CG,
∴△BDF≌△CEG,
∴BD=CE,
∴四边形DBCE是等对边四边形.
(2)存在等对边四边形DBCE,理由如下:
如图,作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.
∴∠BFC=∠CGB=∠CGE=90°
∵∠DCB=∠EBC=∠A,BC=BC,
∴△BCF≌△CBG,
∴BF=CG,
∵
∴∠BOD =∠OBC+∠OCB= ,
∴∠A=∠BOD,
∵∠BDF=∠ABE+∠DOB,∠BEC=∠ABE+∠A,
∴∠BDF=∠BEC,
又∵∠BDF=∠CGE=90°,BF=CG,
∴△BDF≌△CEG,
∴BD=CE,
∴四边形DBCE是等对边四边形.