题目内容
从长度为2,3,5,7的四条线段中任意选取三条,这三条线段能构成三角形的概率等于______.
去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是
A. 最低温度是 B. 众数是
C. 中位数是 D. 平均数是
如图,四边形ABCD是正方形,△BEF是等边三角形,EF=AB,EF∥AB,连接AC,AF,CF,若AB=4,则△ACF的面积是_____.
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
如图,菱形ABCD中,∠B=60°,AB=2,E,F分别是BC、CD的中点,连接AE、EF,则△AEF的周长为_____.
如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=( )
A. 50° B. 60° C. 45° D. 以上都不对
如图,在平面直角坐标系中,抛物线的图象经过点,交x轴于点A、点在B点左侧,顶点为D.
求抛物线的解析式及点A、B的坐标;
将沿直线BC对折,点A的对称点为,试求的坐标;
抛物线的对称轴上是否存在点P,使?若存在,求出点P的坐标;若不存在,请说明理由.
在中,,如果,那么的值是
A. B. C. D. 3
设关于x的方程x2 +(k-4)x-4k =0 有两个不相等的实数根x1,x2,且0<x1<2<x2,那么k的取值范围是 __________.